Sains Malaysiana 54(11)(2025): 2757-2771
http://doi.org/10.17576/jsm-2025-5411-15
Pencantuman
Foto-UV Akrilat Terfungsian pada Getah Asli Terepoksida sebagai Pengikat dalam
Bateri Litium-Ion
(UV-Photografting
of Functionalized Acrylates onto Epoxidized Natural Rubber for Use as Binders in
Lithium-Ion Batteries)
CHAI KAI LING1,2,
JEREMY NG JIAN HAO1, LIN RULEI3, ZHOU CHANG JI4,
WONG CHEE SIEN4,5 & LEE TIAN KHOON1,2,*
1Department of Chemical Science, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
2Battery Technology Research Group (UKMBATT),
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
3Guoneng (Zhejiang) Energy Development Co., Ltd.,
Room 504, Building 2, No.799 Huanzhan East Road, Shangcheng District, Hangzhou,
China
4Zhejiang
Province. Zhejiang Casnovo New Materials Co., Ltd. No.1 Zhongke Road, Zhanmao
Street, Putuo District, Zhoushan City, Zhejiang Province, China
5School of Petrochemical Engineering and
Environment, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng
Street, Dinghai District, Zhoushan City, Zhejiang Province, China
Diserahkan: 27 Jun 2025/Diterima: 13 November 2025
Abstrak
Kajian
ini memfokuskan kepada pengubahsuaian terhadap getah asli terepoksida-25%
(ENR-25) melalui proses fotopempolimeran menggunakan sinaran UV bersama etilena
glikol metil eter akrilat (EGMEA) bagi menghasilkan bahan pengikat baharu
berasaskan getah yang dikenali sebagai Poli(EGMEA-g-ENR). ENR-25 dipilih
disebabkan sifat elastomer semula jadinya yang fleksibel serta keupayaannya
membentuk struktur rangkaian silang yang stabil. EGMEA pula berperanan sebagai
penderma kumpulan akrilat yang bersifat polar, yang berpotensi meningkatkan
interaksi dengan ion litium dan menambah baik sifat mekanikal serta lekatan
pengikat terhadap komposit bahan aktif dalam elektrod. Hasil pencirian
menunjukkan bahawa pencantuman EGMEA telah berjaya memperkenalkan kumpulan
berfungsi -COOR (ester) ke dalam struktur polimer ENR-25, sekali gus
meningkatkan keupayaan penyerapan ion dan sifat elektrokimia. Bahan pengikat Poli(EGMEA-g-ENR)
yang dihasilkan menunjukkan rintangan pemindahan cas yang jauh lebih rendah
(171.3 Ω) berbanding ENR-25 tulen (16,319.0 Ω). Ujian
galvanostatik turut mencatatkan kapasiti nyahcas awal sebanyak
144.43 mAh g-1 dengan kecekapan Coulombik mencapai
96.75%. Secara keseluruhan, hasil kajian ini membuktikan bahawa pengubahsuaian
ENR-25 melalui fotopempolimeran dengan EGMEA berpotensi menghasilkan bahan
pengikat mesra alam yang berprestasi tinggi untuk aplikasi dalam bateri
litium-ion.
Kata
kunci: Bahan pengikat; bateri litium-ion; fotopempolimeran UV; prestasi
elektrokimia; Poli(EGMEA-g-ENR)
Abstract
This
study focuses on the modification of 25% epoxidized natural rubber (ENR-25)
through a photopolymerization process using UV irradiation in the presence of
ethylene glycol methyl ether acrylate (EGMEA), to produce a novel rubber-based
binder known as Poly(EGMEA-g-ENR). ENR-25 was selected due to its
inherent flexible elastomeric properties and its ability to form a stable
crosslinked network structure. EGMEA serves as a donor of polar acrylate
groups, which has the potential to enhance interactions with lithium ions and
improve the mechanical properties and adhesion of the binder to the active
material composite in the electrode. Characterization results showed that the
grafting of EGMEA successfully introduced –COOR (ester) functional groups into
the ENR-25 polymer structure, thereby enhancing ion absorption capacity and
electrochemical performance. The resulting Poly(EGMEA-g-ENR) binder
exhibited a significantly lower charge transfer resistance (171.3 Ω)
compared to pure ENR-25 (16,319.0 Ω). Galvanostatic tests also
recorded an initial discharge capacity of 144.43 mAh g-1 with a Coulombic efficiency of 96.75%. Overall, the findings of this study
demonstrate that the modification of ENR-25 via photopolymerization with EGMEA
holds great potential for producing a high-performance, environmentally
friendly binder material for lithium-ion battery applications.
Keywords:
Binder material; electrochemical performance; lithium-ion battery; Poly(EGMEA-g-ENR);
UV photopolymerization
RUJUKAN
Abdah, M.A.A.M., Mokhtar, M., Khoon, L.T., Sopian, K.,
Dzulkurnain, N.A., Ahmad, A., Sulaiman, Y., Bella, F. & Su’ait, M.S. 2021.
Synthesis and electrochemical characterizations of
poly(3,4-ethylenedioxythiophene/manganese oxide coated on porous carbon
nanofibers as a potential anode for lithium-ion batteries. Energy Reports 7: 8677-8687. https://doi.org/https://doi.org/10.1016/j.egyr.2021.10.110
Afzali, A. & Toiserkani, H. 2022. Fabrication and
evaluation of properties of modified epoxidized natural rubber hybrid films by
the incorporation of amine‐functionalized nanosilica. Polymer-Plastics
Technology and Materials 61(16): 1729-1739.
https://doi.org/10.1080/25740881.2022.2078729
Ahmad, A.A.L. & Gramlich, W.M. 2024. Methacrylate and
polymer grafting pulp pretreatments reduce refining energy to produce modified
cellulose nanofibrils. Cellulose 31(5): 2865-2880.
https://doi.org/10.1007/s10570-024-05796-x
Al-Sulaimi, S., Jahan, M.Q., Ahmad, M., Batool, Z.,
Hamza, M., ur Rehman, A., Ashraf, G.A., Yang, J., Al-Ammar, E.A. &
Wabaidur, S.M. 2024. Impact of carbon dots on the structural, morphological,
magnetic, and electrochemical performance of Zn ferrite for energy storage
applications. Materials Chemistry and Physics 326: 129721.
https://doi.org/https://doi.org/10.1016/j.matchemphys.2024.129721
Albehaijan, H.A., Piedrahita, C.R., Cao, J., Soliman, M.,
Mitra, S. & Kyu, T. 2020. Mechanoelectrical transduction of polymer
electrolyte membranes: Effect of branched networks. ACS Applied Materials
& Interfaces 12(6): 7518-7528. https://doi.org/10.1021/acsami.9b15599
Azaki, N.J., Ahmad, A., Hassan, N.H. & Lee, T.K.
2025. The correlation between carbon additives and the binder: The case of
poly(methyl methacrylate)-grafted natural rubber binder. ACS Applied Polymer
Materials 7(7): 4348-4359. https://doi.org/10.1021/acsapm.4c04230
Azaki, N.J., Ahmad, A., Hassan, N.H., Mohd Abdah, M.A.A.,
Su’ait, M.S., Ataollahi, N. & Lee, T.K. 2023. Poly(methyl methacrylate) grafted
natural rubber binder for anodes in lithium-ion battery applications. ACS
Applied Polymer Materials 5(7): 4953-4965.
https://doi.org/10.1021/acsapm.3c00532
BloombergNEF. 2024. Electric Vehicle Outlook 2024.
https://about.bnef.com/insights/clean-transport/electric-vehicle-outlook/#download-report-summary
Boonmahitthisud, A. 2015. Preparation and characterization
of epoxidized natural rubber and epoxidized natural rubber/Carboxylated styrene
butadiene rubber blends. Journal of Metals, Materials and Minerals 25(1):
27-36. https://doi.org/10.14456/jmmm.2015.4
Borinelli, J.B., Enfrin, M., Blom, J., Giustozzi, F.,
Vuye, C. & Hernando, D. 2024. Investigating thermal and UV ageing effects
on crumb rubber modified bitumen enhanced with emission reduction agents and
carbon black. Construction and Building Materials 449: 138452. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2024.138452
Chai, K., Dzulqurnain, D.D.B., Su’ait, M.S., Ahmad, A.,
Ataollahi, N. & Lee, T.K. 2025a. Real-time Raman spectroscopy of
photopolymerization dynamics in ethylene glycol methyl ether acrylate-g-epoxidized
natural rubber. ACS Applied Polymer Materials 7(3): 1771-1783.
https://doi.org/10.1021/acsapm.4c03593
Chai, K.L., Sukor Su’ait, M., Shukri, G. & Lee, T.K.
2025b. Dynamics interaction in highly stretchable EGMEA-g-ENR-LiTFSI
systems: Insights from molecular interactions via real time Raman and DFT
analysis. Electrochimica Acta 527: 146114.
https://doi.org/https://doi.org/10.1016/j.electacta.2025.146114
Chang, R., Liu, Y., Zhang, Y., Shi, Y., Tang, J., Xu,
Z.L., Zhou, X. & Yang, J. 2025. Weakening lithium-ion coordination in
poly(ethylene oxide)-based solid polymer electrolytes for high performance
solid-state batteries. Advanced Energy Materials 15(26): 2405906.
https://doi.org/https://doi.org/10.1002/aenm.202405906
Chen, B., Zhang, Z., Xiao, M., Wang, S., Huang, S., Han,
D. & Meng, Y. 2024. Polymeric binders used in lithium ion batteries:
Actualities, strategies and trends. ChemElectroChem 11(14): e202300651.
https://doi.org/https://doi.org/10.1002/celc.202300651
Chen, L., Chen, Z., Liu, S., Gao, B. & Wang, J. 2018.
Effects of particle size distribution on compacted density of lithium iron
phosphate 18650 battery. Journal of Electrochemical Energy Conversion and
Storage 15(4): 041011. https://doi.org/10.1115/1.4040825
Cheng, Z., Hu, Y., Wu, K., Xing, Y., Pan, P., Jiang, L.,
Mao, J., Ni, C., Wang, Z., Zhang, M., Zhang, Y., Gu, X. & Zhang, X. 2020.
Si/TiO2/Ti2O3 composite carbon nanofiber by
one-step heat treatment with highly enhanced ion/electron diffusion rates for
next-generation lithium-ion batteries. Electrochimica Acta 337: 135789.
https://doi.org/https://doi.org/10.1016/j.electacta.2020.135789
Del Olmo, R., Guzmán, G., Santos Mendoza, I., Mecerreyes,
D., Forsyth, M. & Casado, N. 2023. Unraveling the influence of Li+‐cation
and TFSI−‐anion in poly(ionic liquid) binders for
lithium‐metal batteries. Batteries & Supercaps 6(3): e202200519.
https://doi.org/10.1002/batt.202200519
Dong, S., Wang, L., Huang, X., Liang, J. & He, X.
2024. Functionalized binders boost high-capacity anode materials. Advanced
Functional Materials 34(41): 2404192.
https://doi.org/https://doi.org/10.1002/adfm.202404192
El Kassar, R., Al Takash, A., Faraj, J., Hammoud, M.,
Khaled, M. & Ramadan, H.S. 2024. Recent advances in lithium-ion battery
integration with thermal management systems for electric vehicles: A summary
review. Journal of Energy Storage 91: 112061.
https://doi.org/https://doi.org/10.1016/j.est.2024.112061
Entwistle, J., Ge, R., Pardikar, K., Smith, R. &
Cumming, D. 2022. Carbon binder domain networks and electrical conductivity in
lithium-ion battery electrodes: A critical review. Renewable and Sustainable
Energy Reviews 166: 112624. https://doi.org/https://doi.org/10.1016/j.rser.2022.112624
Gordon, D. 2022. Battery Market Forecast to 2030:
Pricing, Capacity, and Supply and Demand.
https://www.esource.com/report/130221hvfd/battery-market-forecast-2030-pricing-capacity-and-supply-and-demand
Guo, M., Liang, M. & Du, X. 2023. Evaluation on feasibility
of carbon black and hindered amine light stabilizer as UV-resistant additives
of asphalt binder. Journal of Testing and Evaluation 51(6): 3987-4003.
https://doi.org/10.1520/JTE20220611
Hamzah, R., Bakar, M.A., Khairuddean, M., Mohammed, I.A.
& Adnan, R. 2012. A structural study of epoxidized natural rubber (ENR-50)
and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques. Molecules 17(9): 10974-10993. https://doi.org/10.3390/molecules170910974
Han, J., Zhang, J., Yin, R., Ma, G., Yang, D. & Nie,
J. 2011. Electrospinning of methoxy poly(ethylene glycol)-grafted chitosan and
poly(ethylene oxide) blend aqueous solution. Carbohydrate Polymers 83(1):
270-276. https://doi.org/https://doi.org/10.1016/j.carbpol.2010.07.057
Han, S., Lee, H., Yang, S., Kim, J., Jeong, J., Lee, Y.,
Chun, J., Roh, K.C., Kim, P.J., Lee, D., Sun, S., Jeong, W., Choi, B., Paik,
U., Song, T. & Choi, J. 2025. High-energy-density li-ion batteries employing
gradient porosity LiFePO4 electrode for enhancing Li-ion kinetics
and electron transfer. Small Structures 6: 2500093.
https://doi.org/https://doi.org/10.1002/sstr.202500093
Hasan, M.M., Haque, R., Jahirul, M.I., Rasul, M.G.,
Fattah, I.M.R., Hassan, N.M.S. & Mofijur, M. 2025. Advancing energy
storage: The future trajectory of lithium-ion battery technologies. Journal
of Energy Storage 120: 116511. https://doi.org/10.1016/J.EST.2025.116511
He, Q., Ning, J., Chen, H., Jiang, Z., Wang, J., Chen,
D., Zhao, C., Liu, Z., Perepichka, I.F., Meng, H. & Huang, W. 2024.
Achievements, challenges, and perspectives in the design of polymer binders for
advanced lithium-ion batteries. Chem. Soc. Rev. 53(13): 7091-7157.
https://doi.org/10.1039/D4CS00366G
Khan, F.M.N.U., Rasul, M.G., Sayem, A.S.M. & Mandal,
N. 2023. Maximizing energy density of lithium-ion batteries for electric
vehicles: A critical review. Energy Reports 9: 11-21. https://doi.org/https://doi.org/10.1016/j.egyr.2023.08.069
Kumano, N., Yamaguchi, Y., Akimoto, Y., Ohshima, A.,
Nakamura, H. & Yamamura, M. 2024. Migration of binder and conductive agent
during drying process of Li-ion battery cathodes. Journal of Power Sources 591: 233883. https://doi.org/https://doi.org/10.1016/j.jpowsour.2023.233883
Lee, T.K., Zaini, N.F.M., Mobarak, N.N., Hassan, N.H.,
Noor, S.A.M., Mamat, S., Loh, K.S., KuBulat, K.H., Su’ait, M.S. & Ahmad, A.
2019. PEO based polymer electrolyte comprised of epoxidized natural rubber
material (ENR50) for Li-ion polymer battery application. Electrochimica Acta 316: 283-291. https://doi.org/10.1016/J.ELECTACTA.2019.05.143
Li, D., Shen, C., Zheng, Y. & Xu, J. 2025.
Electrochemo-mechanical degradation and failure of active particles in high
energy density batteries: A review. Small 21(8): 2407740.
https://doi.org/https://doi.org/10.1002/smll.202407740
Liao, H., Huang, B., Cui, Y., Qin, H., Liu, X. & Xu,
H. 2022. Research on a fast detection method of self-discharge of lithium
battery. Journal of Energy Storage 55: 105431.
https://doi.org/https://doi.org/10.1016/j.est.2022.105431
Liu, J., Wang, C., Wu, X., Zhu, F., Liu, M. & Xi, Y.
2019. An enhanced poly(vinylidene fluoride) matrix separator with TEOS for good
performance lithium-ion batteries. Journal of Solid State Electrochemistry 23: 277-284. https://doi.org/10.1007/s10008-018-4126-5
Menye, J.S., Camara, M.B. & Dakyo, B. 2025. Lithium battery
degradation and failure mechanisms: A state-of-the-art review. Energies 18(2): 342. https://doi.org/10.3390/en18020342
Mohsenpour, S., Ge, L., Chung, H.J., Michaud, X., Ette,
P.M., Sandwell, A., Park, S. & Park, C. 2025. Impact of morphology and
carbon coating techniques on the electrochemical performance of silicon-based
anodes for Li-ion batteries. Materials Chemistry and Physics 346:
131345. https://doi.org/https://doi.org/10.1016/j.matchemphys.2025.131345
Pigłowska, M., Kurc, B., Fuć, P. & Szymlet,
N. 2024. Novel recycling technologies and safety aspects of lithium ion batteries
for electric vehicles. Journal of Material Cycles and Waste Management 26(5): 2656-2669. https://doi.org/10.1007/s10163-024-02028-z
Rau, D.A., Bryant, J.S., Reynolds, J.P., Bortner, M.J.
& Williams, C.B. 2023. A dual-cure approach for the ultraviolet-assisted
material extrusion of highly loaded opaque suspensions. Additive
Manufacturing 72: 103616.
https://doi.org/https://doi.org/10.1016/j.addma.2023.103616
Ren, Y., Yang, Y., Zhang, J., Ma, Y. & Chen, C. 2025.
PVDF/PVB composite polymer electrolyte membranes with high conductivity and
excellent cycling performance for lithium-ion batteries. Journal of Applied
Polymer Science 142(6): e56459.
https://doi.org/https://doi.org/10.1002/app.56459
Royal Swedish Academy of Sciences. 2020. The Nobel
Prize in Chemistry 2019. NobelPrize. org.
Serra, J.P., Fidalgo-Marijuan, A., Barbosa, J.C.,
Correia, D.M., Gonçalves, R., Porro, J.M., Lanceros-Mendez, S. & Costa,
C.M. 2022. Lithium-ion battery solid electrolytes based on poly(vinylidene
fluoride)-Metal thiocyanate ionic liquid blends. ACS Applied Polymer
Materials 4(8): 5909-5919. https://doi.org/10.1021/acsapm.2c00789
Smoliński, M., Szczęsna-Chrzan, A., Trzeciak,
T., Ossowska, A., del Campo, E., Żukowska, G.Z., Żero, E., Zybert,
M., Ronduda, H., Ostrowski, A., Marczewski, M. & Marcinek, M. 2025. From
by-product of the petrol gasification to carbon black in lithium-ion batteries -
Novel electron-conductive agents. Applied Physics A 131(4): 233.
https://doi.org/10.1007/s00339-025-08266-8
Soontornnon, N., Kimura, K. & Tominaga, Y. 2024.
Cross-linked ethylene carbonate-based copolymer composite electrolytes filled
with TiO2 for lithium metal batteries. ACS Applied Energy
Materials 7(9): 4190-4199. https://doi.org/10.1021/acsaem.4c00530
Tang, Y., Chen, J., Mao, Z., Roth, C. & Wang, D.
2022. Highly N-doped carbon with low graphitic-N content as anode material for
enhanced initial Coulombic efficiency of lithium-ion batteries. Carbon
Energy 5(2): e257. https://doi.org/https://doi.org/10.1002/cey2.257
Tanjung, F., Hassan, A. & Hasan, M. 2015. Use of
epoxidized natural rubber as a toughening agent in plastics. Journal of
Applied Polymer Science 132(29): 42270. https://doi.org/10.1002/app.42270
Wang, R., Mei, H., Ren, W. & Zhang, Y. 2016. Grafting
modification of epoxidized natural rubber with poly(ethylene glycol)
monomethylether carboxylic acid and ionic conductivity of graft polymer
composite electrolytes. RSC Adv. 6(108): 107021-107028.
https://doi.org/10.1039/C6RA17129J
Whba, R., Su’ait, M.S., Tian Khoon, L., Ibrahim, S.,
Mohamed, N.S. & Ahmad, A. 2021a. Free-radical photopolymerization of
acrylonitrile grafted onto epoxidized natural rubber. Polymers 13(4): 660.
https://doi.org/10.3390/polym13040660
Whba, R., Su’ait, M.S., TianKhoon, L., Ibrahim, S.,
Mohamed, N.S. & Ahmad, A. 2021b. In-situ UV cured acrylonitrile
grafted epoxidized natural rubber (ACN-g-ENR) - LiTFSI solid polymer
electrolytes for lithium-ion rechargeable batteries. Reactive and Functional
Polymers 164: 104938.
https://doi.org/https://doi.org/10.1016/j.reactfunctpolym.2021.104938
Wijareni, A.S., Karunawan, J., Ichlas, Z.T., Sumboja, A.
& Mubarok, M.Z. 2025. Recent advances in synthesis and fabrication of
LiFePO4 cathode materials: A comprehensive review. Ionics 31:
7565-7593. https://doi.org/10.1007/s11581-025-06460-5
Wu, C.C., Ho, Y.C. & Chung, S.H. 2023. A
low-self-discharge high-loading polysulfide cathode design for lithium–sulfur
cells. J. Mater. Chem. A 11(45): 24651-24660.
https://doi.org/10.1039/D3TA05632E
Wu, Y., Xie, L., Ming, H., Guo, Y., Hwang, J.Y., Wang,
W., He, X., Wang, L., Alshareef, H. N., Sun, Y.K. & Ming, J. 2020. An empirical
model for the design of batteries with high energy density. ACS Energy
Letters 5(3): 807-816. https://doi.org/10.1021/acsenergylett.0c00211
Xiao, S., Huang, L., Lv, W. & He, Y.B. 2022. A highly
efficient ion and electron conductive interlayer to achieve low self-discharge
of lithium–sulfur batteries. ACS Applied Materials & Interfaces 14(1): 1783-1790. https://doi.org/10.1021/acsami.1c21398
Yan, J., Yu, S., Wang, F., Zhang, X., Yang, J., Guo, Q.,
Huang, L., Liu, J., Zhang, Q. & Lee, P.S. 2024. Long cycle life achieved in
polyaniline/SP based self-healing supercapacitor. Electrochimica Acta 493: 144394. https://doi.org/https://doi.org/10.1016/j.electacta.2024.144394
Yoon, H., Behera, P., Lim, S., Yun, T.G., Hwang, B. &
Cheong, J.Y. 2024. Review of the mechanistic and structural assessment of
binders in electrodes for lithium-ion batteries. International Journal of
Energy Research 2024(1): 8893580.
https://doi.org/https://doi.org/10.1155/2024/8893580
Zhang, L., Wu, X., Qian, W., Pan, K., Zhang, X., Li, L.,
Jia, M. & Zhang, S. 2023a. Exploring more functions in binders for lithium
batteries. Electrochemical Energy Reviews 6(1): 36.
https://doi.org/10.1007/s41918-023-00198-2
Zhang, Y., Qi, B., Yang, X., Yan, J., Luo, Y., Yang, Z.,
Lu, L. & Li, C. 2023b. Influence mechanisms of epoxy degradation on surface
traps and charge accumulation under DC electrical–thermal stress. Journal of
Physics D: Applied Physics 56(32): 324001.
https://doi.org/10.1088/1361-6463/accc40
Zhao, L., Li, Y., Yu, M., Peng, Y. & Ran, F. 2023.
Electrolyte-wettability issues and challenges of electrode materials in
electrochemical energy storage, energy conversion, and beyond. Advanced
Science 10(17): 2300283.
https://doi.org/https://doi.org/10.1002/advs.202300283
Zhao, L., Sun, Z., Zhang, H., Li, Y., Mo, Y., Yu, F.
& Chen, Y. 2020. An environment-friendly crosslinked binder endowing LiFePO4 electrode with structural integrity and long cycle life performance. RSC
Adv. 10(49): 29362-29372. https://doi.org/10.1039/D0RA05095D
Zhao, X., Niketic, S., Yim, C.H., Zhou, J., Wang, J.
& Abu-Lebdeh, Y. 2018. Revealing the role of poly(vinylidene fluoride)
binder in Si/graphite composite anode for Li-ion batteries. ACS Omega 3(9): 11684-11690. https://doi.org/10.1021/acsomega.8b01388
*Pengarang untuk surat-menyurat; email: tiankhoon@ukm.edu.my