Sains Malaysiana 54(11)(2025): 2757-2771

http://doi.org/10.17576/jsm-2025-5411-15

 

Pencantuman Foto-UV Akrilat Terfungsian pada Getah Asli Terepoksida sebagai Pengikat dalam Bateri Litium-Ion

(UV-Photografting of Functionalized Acrylates onto Epoxidized Natural Rubber for Use as Binders in Lithium-Ion Batteries)

 

CHAI KAI LING1,2, JEREMY NG JIAN HAO1, LIN RULEI3, ZHOU CHANG JI4, WONG CHEE SIEN4,5 & LEE TIAN KHOON1,2,*

 

1Department of Chemical Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Battery Technology Research Group (UKMBATT), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Guoneng (Zhejiang) Energy Development Co., Ltd., Room 504, Building 2, No.799 Huanzhan East Road, Shangcheng District, Hangzhou, China

 4Zhejiang Province. Zhejiang Casnovo New Materials Co., Ltd. No.1 Zhongke Road, Zhanmao Street, Putuo District, Zhoushan City, Zhejiang Province, China

5School of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, Zhejiang Province, China

 

Diserahkan: 27 Jun 2025/Diterima: 13 November 2025

 

Abstrak

Kajian ini memfokuskan kepada pengubahsuaian terhadap getah asli terepoksida-25% (ENR-25) melalui proses fotopempolimeran menggunakan sinaran UV bersama etilena glikol metil eter akrilat (EGMEA) bagi menghasilkan bahan pengikat baharu berasaskan getah yang dikenali sebagai Poli(EGMEA-g-ENR). ENR-25 dipilih disebabkan sifat elastomer semula jadinya yang fleksibel serta keupayaannya membentuk struktur rangkaian silang yang stabil. EGMEA pula berperanan sebagai penderma kumpulan akrilat yang bersifat polar, yang berpotensi meningkatkan interaksi dengan ion litium dan menambah baik sifat mekanikal serta lekatan pengikat terhadap komposit bahan aktif dalam elektrod. Hasil pencirian menunjukkan bahawa pencantuman EGMEA telah berjaya memperkenalkan kumpulan berfungsi -COOR (ester) ke dalam struktur polimer ENR-25, sekali gus meningkatkan keupayaan penyerapan ion dan sifat elektrokimia. Bahan pengikat Poli(EGMEA-g-ENR) yang dihasilkan menunjukkan rintangan pemindahan cas yang jauh lebih rendah (171.3 Ω) berbanding ENR-25 tulen (16,319.0 Ω). Ujian galvanostatik turut mencatatkan kapasiti nyahcas awal sebanyak 144.43 mAh g-1 dengan kecekapan Coulombik mencapai 96.75%. Secara keseluruhan, hasil kajian ini membuktikan bahawa pengubahsuaian ENR-25 melalui fotopempolimeran dengan EGMEA berpotensi menghasilkan bahan pengikat mesra alam yang berprestasi tinggi untuk aplikasi dalam bateri litium-ion.

Kata kunci: Bahan pengikat; bateri litium-ion; fotopempolimeran UV; prestasi elektrokimia; Poli(EGMEA-g-ENR)

 

Abstract

This study focuses on the modification of 25% epoxidized natural rubber (ENR-25) through a photopolymerization process using UV irradiation in the presence of ethylene glycol methyl ether acrylate (EGMEA), to produce a novel rubber-based binder known as Poly(EGMEA-g-ENR). ENR-25 was selected due to its inherent flexible elastomeric properties and its ability to form a stable crosslinked network structure. EGMEA serves as a donor of polar acrylate groups, which has the potential to enhance interactions with lithium ions and improve the mechanical properties and adhesion of the binder to the active material composite in the electrode. Characterization results showed that the grafting of EGMEA successfully introduced –COOR (ester) functional groups into the ENR-25 polymer structure, thereby enhancing ion absorption capacity and electrochemical performance. The resulting Poly(EGMEA-g-ENR) binder exhibited a significantly lower charge transfer resistance (171.3 Ω) compared to pure ENR-25 (16,319.0 Ω). Galvanostatic tests also recorded an initial discharge capacity of 144.43 mAh g-1 with a Coulombic efficiency of 96.75%. Overall, the findings of this study demonstrate that the modification of ENR-25 via photopolymerization with EGMEA holds great potential for producing a high-performance, environmentally friendly binder material for lithium-ion battery applications.

Keywords: Binder material; electrochemical performance; lithium-ion battery; Poly(EGMEA-g-ENR); UV photopolymerization

 

RUJUKAN

Abdah, M.A.A.M., Mokhtar, M., Khoon, L.T., Sopian, K., Dzulkurnain, N.A., Ahmad, A., Sulaiman, Y., Bella, F. & Su’ait, M.S. 2021. Synthesis and electrochemical characterizations of poly(3,4-ethylenedioxythiophene/manganese oxide coated on porous carbon nanofibers as a potential anode for lithium-ion batteries. Energy Reports 7: 8677-8687. https://doi.org/https://doi.org/10.1016/j.egyr.2021.10.110

Afzali, A. & Toiserkani, H. 2022. Fabrication and evaluation of properties of modified epoxidized natural rubber hybrid films by the incorporation of amine‐functionalized nanosilica. Polymer-Plastics Technology and Materials 61(16): 1729-1739. https://doi.org/10.1080/25740881.2022.2078729

Ahmad, A.A.L. & Gramlich, W.M. 2024. Methacrylate and polymer grafting pulp pretreatments reduce refining energy to produce modified cellulose nanofibrils. Cellulose 31(5): 2865-2880. https://doi.org/10.1007/s10570-024-05796-x

Al-Sulaimi, S., Jahan, M.Q., Ahmad, M., Batool, Z., Hamza, M., ur Rehman, A., Ashraf, G.A., Yang, J., Al-Ammar, E.A. & Wabaidur, S.M. 2024. Impact of carbon dots on the structural, morphological, magnetic, and electrochemical performance of Zn ferrite for energy storage applications. Materials Chemistry and Physics 326: 129721. https://doi.org/https://doi.org/10.1016/j.matchemphys.2024.129721

Albehaijan, H.A., Piedrahita, C.R., Cao, J., Soliman, M., Mitra, S. & Kyu, T. 2020. Mechanoelectrical transduction of polymer electrolyte membranes: Effect of branched networks. ACS Applied Materials & Interfaces 12(6): 7518-7528. https://doi.org/10.1021/acsami.9b15599

Azaki, N.J., Ahmad, A., Hassan, N.H. & Lee, T.K. 2025. The correlation between carbon additives and the binder: The case of poly(methyl methacrylate)-grafted natural rubber binder. ACS Applied Polymer Materials 7(7): 4348-4359. https://doi.org/10.1021/acsapm.4c04230

Azaki, N.J., Ahmad, A., Hassan, N.H., Mohd Abdah, M.A.A., Su’ait, M.S., Ataollahi, N. & Lee, T.K. 2023. Poly(methyl methacrylate) grafted natural rubber binder for anodes in lithium-ion battery applications. ACS Applied Polymer Materials 5(7): 4953-4965. https://doi.org/10.1021/acsapm.3c00532

BloombergNEF. 2024. Electric Vehicle Outlook 2024. https://about.bnef.com/insights/clean-transport/electric-vehicle-outlook/#download-report-summary

Boonmahitthisud, A. 2015. Preparation and characterization of epoxidized natural rubber and epoxidized natural rubber/Carboxylated styrene butadiene rubber blends. Journal of Metals, Materials and Minerals 25(1): 27-36. https://doi.org/10.14456/jmmm.2015.4

Borinelli, J.B., Enfrin, M., Blom, J., Giustozzi, F., Vuye, C. & Hernando, D. 2024. Investigating thermal and UV ageing effects on crumb rubber modified bitumen enhanced with emission reduction agents and carbon black. Construction and Building Materials 449: 138452.  https://doi.org/https://doi.org/10.1016/j.conbuildmat.2024.138452

Chai, K., Dzulqurnain, D.D.B., Su’ait, M.S., Ahmad, A., Ataollahi, N. & Lee, T.K. 2025a. Real-time Raman spectroscopy of photopolymerization dynamics in ethylene glycol methyl ether acrylate-g-epoxidized natural rubber. ACS Applied Polymer Materials 7(3): 1771-1783. https://doi.org/10.1021/acsapm.4c03593

Chai, K.L., Sukor Su’ait, M., Shukri, G. & Lee, T.K. 2025b. Dynamics interaction in highly stretchable EGMEA-g-ENR-LiTFSI systems: Insights from molecular interactions via real time Raman and DFT analysis. Electrochimica Acta 527: 146114. https://doi.org/https://doi.org/10.1016/j.electacta.2025.146114

Chang, R., Liu, Y., Zhang, Y., Shi, Y., Tang, J., Xu, Z.L., Zhou, X. & Yang, J. 2025. Weakening lithium-ion coordination in poly(ethylene oxide)-based solid polymer electrolytes for high performance solid-state batteries. Advanced Energy Materials 15(26): 2405906. https://doi.org/https://doi.org/10.1002/aenm.202405906

Chen, B., Zhang, Z., Xiao, M., Wang, S., Huang, S., Han, D. & Meng, Y. 2024. Polymeric binders used in lithium ion batteries: Actualities, strategies and trends. ChemElectroChem 11(14): e202300651. https://doi.org/https://doi.org/10.1002/celc.202300651

Chen, L., Chen, Z., Liu, S., Gao, B. & Wang, J. 2018. Effects of particle size distribution on compacted density of lithium iron phosphate 18650 battery. Journal of Electrochemical Energy Conversion and Storage 15(4): 041011. https://doi.org/10.1115/1.4040825

Cheng, Z., Hu, Y., Wu, K., Xing, Y., Pan, P., Jiang, L., Mao, J., Ni, C., Wang, Z., Zhang, M., Zhang, Y., Gu, X. & Zhang, X. 2020. Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries. Electrochimica Acta 337: 135789. https://doi.org/https://doi.org/10.1016/j.electacta.2020.135789

Del Olmo, R., Guzmán, G., Santos Mendoza, I., Mecerreyes, D., Forsyth, M. & Casado, N. 2023. Unraveling the influence of Li+‐cation and TFSI‐anion in poly(ionic liquid) binders for lithium‐metal batteries. Batteries & Supercaps 6(3): e202200519. https://doi.org/10.1002/batt.202200519

Dong, S., Wang, L., Huang, X., Liang, J. & He, X. 2024. Functionalized binders boost high-capacity anode materials. Advanced Functional Materials 34(41): 2404192. https://doi.org/https://doi.org/10.1002/adfm.202404192

El Kassar, R., Al Takash, A., Faraj, J., Hammoud, M., Khaled, M. & Ramadan, H.S. 2024. Recent advances in lithium-ion battery integration with thermal management systems for electric vehicles: A summary review. Journal of Energy Storage 91: 112061. https://doi.org/https://doi.org/10.1016/j.est.2024.112061

Entwistle, J., Ge, R., Pardikar, K., Smith, R. & Cumming, D. 2022. Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review. Renewable and Sustainable Energy Reviews 166: 112624. https://doi.org/https://doi.org/10.1016/j.rser.2022.112624

Gordon, D. 2022. Battery Market Forecast to 2030: Pricing, Capacity, and Supply and Demand. https://www.esource.com/report/130221hvfd/battery-market-forecast-2030-pricing-capacity-and-supply-and-demand

Guo, M., Liang, M. & Du, X. 2023. Evaluation on feasibility of carbon black and hindered amine light stabilizer as UV-resistant additives of asphalt binder. Journal of Testing and Evaluation 51(6): 3987-4003. https://doi.org/10.1520/JTE20220611

Hamzah, R., Bakar, M.A., Khairuddean, M., Mohammed, I.A. & Adnan, R. 2012. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques. Molecules 17(9): 10974-10993. https://doi.org/10.3390/molecules170910974

Han, J., Zhang, J., Yin, R., Ma, G., Yang, D. & Nie, J. 2011. Electrospinning of methoxy poly(ethylene glycol)-grafted chitosan and poly(ethylene oxide) blend aqueous solution. Carbohydrate Polymers 83(1): 270-276. https://doi.org/https://doi.org/10.1016/j.carbpol.2010.07.057

Han, S., Lee, H., Yang, S., Kim, J., Jeong, J., Lee, Y., Chun, J., Roh, K.C., Kim, P.J., Lee, D., Sun, S., Jeong, W., Choi, B., Paik, U., Song, T. & Choi, J. 2025. High-energy-density li-ion batteries employing gradient porosity LiFePO4 electrode for enhancing Li-ion kinetics and electron transfer. Small Structures 6: 2500093. https://doi.org/https://doi.org/10.1002/sstr.202500093

Hasan, M.M., Haque, R., Jahirul, M.I., Rasul, M.G., Fattah, I.M.R., Hassan, N.M.S. & Mofijur, M. 2025. Advancing energy storage: The future trajectory of lithium-ion battery technologies. Journal of Energy Storage 120: 116511. https://doi.org/10.1016/J.EST.2025.116511

He, Q., Ning, J., Chen, H., Jiang, Z., Wang, J., Chen, D., Zhao, C., Liu, Z., Perepichka, I.F., Meng, H. & Huang, W. 2024. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries. Chem. Soc. Rev. 53(13): 7091-7157. https://doi.org/10.1039/D4CS00366G

Khan, F.M.N.U., Rasul, M.G., Sayem, A.S.M. & Mandal, N. 2023. Maximizing energy density of lithium-ion batteries for electric vehicles: A critical review. Energy Reports 9: 11-21. https://doi.org/https://doi.org/10.1016/j.egyr.2023.08.069

Kumano, N., Yamaguchi, Y., Akimoto, Y., Ohshima, A., Nakamura, H. & Yamamura, M. 2024. Migration of binder and conductive agent during drying process of Li-ion battery cathodes. Journal of Power Sources 591: 233883. https://doi.org/https://doi.org/10.1016/j.jpowsour.2023.233883

Lee, T.K., Zaini, N.F.M., Mobarak, N.N., Hassan, N.H., Noor, S.A.M., Mamat, S., Loh, K.S., KuBulat, K.H., Su’ait, M.S. & Ahmad, A. 2019. PEO based polymer electrolyte comprised of epoxidized natural rubber material (ENR50) for Li-ion polymer battery application. Electrochimica Acta 316: 283-291. https://doi.org/10.1016/J.ELECTACTA.2019.05.143

Li, D., Shen, C., Zheng, Y. & Xu, J. 2025. Electrochemo-mechanical degradation and failure of active particles in high energy density batteries: A review. Small 21(8): 2407740. https://doi.org/https://doi.org/10.1002/smll.202407740

Liao, H., Huang, B., Cui, Y., Qin, H., Liu, X. & Xu, H. 2022. Research on a fast detection method of self-discharge of lithium battery. Journal of Energy Storage 55: 105431. https://doi.org/https://doi.org/10.1016/j.est.2022.105431

Liu, J., Wang, C., Wu, X., Zhu, F., Liu, M. & Xi, Y. 2019. An enhanced poly(vinylidene fluoride) matrix separator with TEOS for good performance lithium-ion batteries. Journal of Solid State Electrochemistry 23: 277-284. https://doi.org/10.1007/s10008-018-4126-5

Menye, J.S., Camara, M.B. & Dakyo, B. 2025. Lithium battery degradation and failure mechanisms: A state-of-the-art review. Energies 18(2): 342. https://doi.org/10.3390/en18020342

Mohsenpour, S., Ge, L., Chung, H.J., Michaud, X., Ette, P.M., Sandwell, A., Park, S. & Park, C. 2025. Impact of morphology and carbon coating techniques on the electrochemical performance of silicon-based anodes for Li-ion batteries. Materials Chemistry and Physics 346: 131345. https://doi.org/https://doi.org/10.1016/j.matchemphys.2025.131345

Pigłowska, M., Kurc, B., Fuć, P. & Szymlet, N. 2024. Novel recycling technologies and safety aspects of lithium ion batteries for electric vehicles. Journal of Material Cycles and Waste Management 26(5): 2656-2669. https://doi.org/10.1007/s10163-024-02028-z

Rau, D.A., Bryant, J.S., Reynolds, J.P., Bortner, M.J. & Williams, C.B. 2023. A dual-cure approach for the ultraviolet-assisted material extrusion of highly loaded opaque suspensions. Additive Manufacturing 72: 103616. https://doi.org/https://doi.org/10.1016/j.addma.2023.103616

Ren, Y., Yang, Y., Zhang, J., Ma, Y. & Chen, C. 2025. PVDF/PVB composite polymer electrolyte membranes with high conductivity and excellent cycling performance for lithium-ion batteries. Journal of Applied Polymer Science 142(6): e56459. https://doi.org/https://doi.org/10.1002/app.56459

Royal Swedish Academy of Sciences. 2020. The Nobel Prize in Chemistry 2019. NobelPrize. org.

Serra, J.P., Fidalgo-Marijuan, A., Barbosa, J.C., Correia, D.M., Gonçalves, R., Porro, J.M., Lanceros-Mendez, S. & Costa, C.M. 2022. Lithium-ion battery solid electrolytes based on poly(vinylidene fluoride)-Metal thiocyanate ionic liquid blends. ACS Applied Polymer Materials 4(8): 5909-5919. https://doi.org/10.1021/acsapm.2c00789

Smoliński, M., Szczęsna-Chrzan, A., Trzeciak, T., Ossowska, A., del Campo, E., Żukowska, G.Z., Żero, E., Zybert, M., Ronduda, H., Ostrowski, A., Marczewski, M. & Marcinek, M. 2025. From by-product of the petrol gasification to carbon black in lithium-ion batteries - Novel electron-conductive agents. Applied Physics A 131(4): 233. https://doi.org/10.1007/s00339-025-08266-8

Soontornnon, N., Kimura, K. & Tominaga, Y. 2024. Cross-linked ethylene carbonate-based copolymer composite electrolytes filled with TiO2 for lithium metal batteries. ACS Applied Energy Materials 7(9): 4190-4199. https://doi.org/10.1021/acsaem.4c00530

Tang, Y., Chen, J., Mao, Z., Roth, C. & Wang, D. 2022. Highly N-doped carbon with low graphitic-N content as anode material for enhanced initial Coulombic efficiency of lithium-ion batteries. Carbon Energy 5(2): e257. https://doi.org/https://doi.org/10.1002/cey2.257

Tanjung, F., Hassan, A. & Hasan, M. 2015. Use of epoxidized natural rubber as a toughening agent in plastics. Journal of Applied Polymer Science 132(29): 42270. https://doi.org/10.1002/app.42270

Wang, R., Mei, H., Ren, W. & Zhang, Y. 2016. Grafting modification of epoxidized natural rubber with poly(ethylene glycol) monomethylether carboxylic acid and ionic conductivity of graft polymer composite electrolytes. RSC Adv. 6(108): 107021-107028. https://doi.org/10.1039/C6RA17129J

Whba, R., Su’ait, M.S., Tian Khoon, L., Ibrahim, S., Mohamed, N.S. & Ahmad, A. 2021a. Free-radical photopolymerization of acrylonitrile grafted onto epoxidized natural rubber. Polymers 13(4): 660. https://doi.org/10.3390/polym13040660

Whba, R., Su’ait, M.S., TianKhoon, L., Ibrahim, S., Mohamed, N.S. & Ahmad, A. 2021b. In-situ UV cured acrylonitrile grafted epoxidized natural rubber (ACN-g-ENR) - LiTFSI solid polymer electrolytes for lithium-ion rechargeable batteries. Reactive and Functional Polymers 164: 104938. https://doi.org/https://doi.org/10.1016/j.reactfunctpolym.2021.104938

Wijareni, A.S., Karunawan, J., Ichlas, Z.T., Sumboja, A. & Mubarok, M.Z. 2025. Recent advances in synthesis and fabrication of LiFePO4 cathode materials: A comprehensive review. Ionics 31: 7565-7593. https://doi.org/10.1007/s11581-025-06460-5

Wu, C.C., Ho, Y.C. & Chung, S.H. 2023. A low-self-discharge high-loading polysulfide cathode design for lithium–sulfur cells. J. Mater. Chem. A 11(45): 24651-24660. https://doi.org/10.1039/D3TA05632E

Wu, Y., Xie, L., Ming, H., Guo, Y., Hwang, J.Y., Wang, W., He, X., Wang, L., Alshareef, H. N., Sun, Y.K. & Ming, J. 2020. An empirical model for the design of batteries with high energy density. ACS Energy Letters 5(3): 807-816. https://doi.org/10.1021/acsenergylett.0c00211

Xiao, S., Huang, L., Lv, W. & He, Y.B. 2022. A highly efficient ion and electron conductive interlayer to achieve low self-discharge of lithium–sulfur batteries. ACS Applied Materials & Interfaces 14(1): 1783-1790. https://doi.org/10.1021/acsami.1c21398

Yan, J., Yu, S., Wang, F., Zhang, X., Yang, J., Guo, Q., Huang, L., Liu, J., Zhang, Q. & Lee, P.S. 2024. Long cycle life achieved in polyaniline/SP based self-healing supercapacitor. Electrochimica Acta 493: 144394. https://doi.org/https://doi.org/10.1016/j.electacta.2024.144394

Yoon, H., Behera, P., Lim, S., Yun, T.G., Hwang, B. & Cheong, J.Y. 2024. Review of the mechanistic and structural assessment of binders in electrodes for lithium-ion batteries. International Journal of Energy Research 2024(1): 8893580. https://doi.org/https://doi.org/10.1155/2024/8893580

Zhang, L., Wu, X., Qian, W., Pan, K., Zhang, X., Li, L., Jia, M. & Zhang, S. 2023a. Exploring more functions in binders for lithium batteries. Electrochemical Energy Reviews 6(1): 36. https://doi.org/10.1007/s41918-023-00198-2

Zhang, Y., Qi, B., Yang, X., Yan, J., Luo, Y., Yang, Z., Lu, L. & Li, C. 2023b. Influence mechanisms of epoxy degradation on surface traps and charge accumulation under DC electrical–thermal stress. Journal of Physics D: Applied Physics 56(32): 324001. https://doi.org/10.1088/1361-6463/accc40

Zhao, L., Li, Y., Yu, M., Peng, Y. & Ran, F. 2023. Electrolyte-wettability issues and challenges of electrode materials in electrochemical energy storage, energy conversion, and beyond. Advanced Science 10(17): 2300283. https://doi.org/https://doi.org/10.1002/advs.202300283

Zhao, L., Sun, Z., Zhang, H., Li, Y., Mo, Y., Yu, F. & Chen, Y. 2020. An environment-friendly crosslinked binder endowing LiFePO4 electrode with structural integrity and long cycle life performance. RSC Adv. 10(49): 29362-29372. https://doi.org/10.1039/D0RA05095D

Zhao, X., Niketic, S., Yim, C.H., Zhou, J., Wang, J. & Abu-Lebdeh, Y. 2018. Revealing the role of poly(vinylidene fluoride) binder in Si/graphite composite anode for Li-ion batteries. ACS Omega 3(9): 11684-11690. https://doi.org/10.1021/acsomega.8b01388

 

*Pengarang untuk surat-menyurat; email: tiankhoon@ukm.edu.my

 

 

 

 

 

 

 

 

           

sebelumnya